
CS 61BL ADTs and Inheritance
Summer 2021 Recurring Section 4: Tuesday July 6, 2021

1 ADT Selection
Suppose we have a TA Shreyas who teaches multiple discussion sections! A student

may frequent more than one discussion section. For each situation below, choose

the best ADT(s) out of the following — Map, Set, List — and explain how you can

use the ADT(s) to solve the problem. Each subpart is independent of the previous.

One answer may involve multiple ADTs. There may be mutliple efficient answers

for each problem.

1. Storing all the Students in Shreyas’s first section in alphabetical order.

2. Storing all the Students by their section, where Students within a section are

sorted alphabetically.

3. Storing the Students in all of Shreyas’s sections. There shouldn’t be dupli-

cates.

4. Quickly getting a Student by sid.

5. Quickly getting all Students of a given name. Names aren’t necessarily unique.

6. Cycling through the Students in one discussion section.

Solution:

1. Put the Students in a List in alphabetical order.

2. Use a Map, where each Section maps to an alphabetically ordered List of

Students in that section.

3. Use a Set. Add all the Students to the Set. Since a set requires elements to

be unique, calling add on a student already in the set will not add a duplicate.

4. Use a Map, where each sid maps to one Student.



2 ADTs and Inheritance

5. Use one Map that maps names to a List (or Set) of Students of the given

name.

6. Put the Students in a List. You could use a LinkedList and repeatedly

remove from the front and reinsert at the back. Equivalently, you could use

an ArrayList and keep an index pointer.



ADTs and Inheritance 3

2 The ABCs of OOP
Indicate what each line the main program in class D would print, if the line prints

anything. If any lines error out, identify the errors as compile time or runtime

errors.

public class A {

public void x() {

System.out.println("Ax");

}

public void y(A z) {

System.out.println("Ay");

}

}

public class B extends A {

public void y() {

System.out.println("By");

}

public void y(B z) {

System.out.println("Byz");

}

}

public class C extends A {

public void x() {

System.out.println("Cx");

}

}

public class D {

public static void main(String[] args) {

A e = new B();

A f = new C();

B g = new A();

B h = new C();

C i = (C) new A();

B j = (A) new C();

B k = (B) e;

f.x();

e.x();

e.y();

((B) e).y();

e.y(e);

e.y(f);

}

}



4 ADTs and Inheritance

1 A e = new B();

2 A f = new C();

3 B g = new A(); // compile time error

4 B h = new C(); // compile time error

5 C i = (C) new A(); // runtime error

6 B j = (A) new C(); // compile time error

7 B k = (B) e;

8 f.x(); // Cx

9 e.x(); // Ax

10 e.y(); // compile time error

11 ((B) e).y(); // By

12 e.y(e); // Ay

13 e.y(f); // Ay



ADTs and Inheritance 5

3 Classy Cats
Look at the Animal class defined below. The protected access modifier may be new

to you. Simply put, it gives classes in the same package and subclasses access to

those variables. Don’t worry too much about understanding this - it’s not in scope

for exams.

1 public class Animal {

2 protected String name, noise;

3 protected int age;

4

5 public Animal(String name, int age) {

6 this.name = name;

7 this.age = age;

8 this.noise = "Huh?";

9 }

10

11 public String makeNoise() {

12 if (age < 2) {

13 return noise.toUpperCase();

14 }

15 return noise;

16 }

17

18 public String greet() {

19 return name + ": " + makeNoise();

20 }

21 }

(a) Given the Animal class, fill in the definition of the Cat class so that it makes a

”Meow!” noise. Assume this noise is all caps for kittens, i.e. Cats that are less

than 2 years old.

1 public class Cat extends Animal {

1 }

Solution:

1 class Cat extends Animal {

2 public Cat(String name, int age) {

3 super(name, age);

4 this.noise = "Meow!";



6 ADTs and Inheritance

5 }

6 }

Explanation: Inheritance is powerful because it allows us to reuse code for

related classes. With the Cat class here, we just have to re-write the construc-

tor to get all the goodness of the Animal class. Why is it necessary to call

super(name, age); within the Cat constructor? It turns out that a subclass’s

constructor by default always calls its parent class’s constructor (aka a super

constructor). If we didn’t specify the call to the Animal super constructor that

takes in a String and a int, we’d get a compiler error. This is because the

default super constructor (super();) would have been called. Only problem

is that the Animal class has no such zero-argument constructor! By explicitly

calling super(name, age); in the first line of the Cat constructor, we avoid

calling the default super constructor.

Similarly, not providing any explicit constructor at all in the Cat implemen-

tation would also result in code that does not compile. This is because when

there are no constructors available in a class, Java automatically inserts a no-

argument constructor for you. In that no-argument constructor, Java will then

attempt to call the default super constructor, which again, does not exist.

(b) ”Animal” is an extremely broad classification, so it doesn’t really make sense

to have it be a class. Look at the new definition of the Animal class below.

1 public abstract class Animal {

2 protected String name;

3 protected String noise = "Huh?";

4 protected int age;

5

6 public String makeNoise() {

7 if (age < 2) {

8 return noise.toUpperCase();

9 }

10 return noise;

11 }

12

13 public String greet() {

14 return name + ": " + makeNoise();

15 }

16

17 public abstract void shout();

18 }

Fill out the Cat class again below to allow it to be compatible with Animal

(which is now an abstract class) and its one methods.

1 public class Cat extends Animal {

2 public Cat() {

3 this.name = "Kitty";



ADTs and Inheritance 7

4 this.age = 1;

5 this.noise = "Meow!";

6 }

7

8 public Cat(String name, int age) {

9 this();

10 this.name = name;

11 this.age = age;

12 }

13

14 @Override

15 ____________ ____________ shout() {

16 System.out.println(noise.toUpperCase());

17 }

18 }

Solution:

1 public class Cat extends Animal {

2 public Cat() {

3 this.name = "Kitty";

4 this.age = 1;

5 this.noise = "Meow!";

6 }

7

8 public Cat(String name, int age) {

9 this();

10 this.name = name;

11 this.age = age;

12 }

13

14 @Override

15 public void shout() {

16 System.out.println(noise.toUpperCase());

17 }

18 }

Explanation: To override an abstract method, the method signature’s access

modifiers must match exactly. Since shout is declared to be public abstract

in Animal, our Cat class must declare it to be public to ensure that access

modifiers match.

Note the Override tags aren’t required, but are good practice.


	ADT Selection
	The ABCs of OOP
	Classy Cats

