
Design Document
1. How is your .gitlet directory structured? What files / classes are you using to represent

your repository state, and what information is contained in these files / classes?

● .gitlet
○ Blobs (dir with files named with hashcodes of tracked files)
○ Commits (dir with files named with hashcodes of Commit objects)
○ Stage (dir with file names, each file has content written as blob)
○ Head (file, content is the hash of the current branch)
○ Main (file, content is the hash of the current commit)

2. What is the process of adding a file then committing? How does your .gitlet directory
change after adding; then after committing?

Initial commit 0
Create repo
Commit with metadata
Main points to commit
Head ID updated

Adding file
DONT stage if committed version is identical; in that case, remove from stage if
it’s already there
Staged for addition, contents saved in blob
Blobs saved
Stage saved

Committing
Commit 1 created with metadata
Pointer to blob (contents of file unique ID created from hashing)
Blobs: files, parent, msg, time
SAME FILE CONTENTS, BUT ADDITION AND REMOVAL UPDATED
Watch for date and message
Clear the stage!
Commit only cares about updates before staged
Main points to Commit 1
Head ID updated
Reference to parent commit
No files → No changes added to the commit.
No msg → Please enter a commit message.



Checkout
Reference to head ID
Use Hashmap on Commit to find the right info
Write to object in CWD

Checkout [ID]
Same thing, but find the reference to the commit

Log
Find references to all commits, print using Commit class
commit.getMessage(), etc.

3. How does your design support operations that rely on branches? You should explicitly
account for branch, checkout [branch name], and reset. Note: even though branches are
not part of the checkpoint, we strongly encourage thinking about them earlier – you have
a default branch, so your branch representation does actually affect your checkpoint
implementation!

● Branches can make more directories??


